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T ABSTRACT :
§
;! We discuss a number of topics related to the practical solution of i1l §
§ ! posed problems given noisy data as it might arise in an experimental ‘

i; situation. The model is z, = [K t)f(t)dt + <., i =1,2,...,n, where i
*'l z = (z,...,2,)" is the data vector, = = (gy,...,8,)" 1s a vector of ;

3 independent zero mean random variables with common unknown variance, X is i
¥ known, and it is desired to estimate]f given z. We first define the

intrinsic rank of the problem where jK(ti,t)f(t)dt is known exactly. This

0

i definition is used to provide insight into the circumstances in which one
may expect to estimate f well, moderately well, or poorly. The sensitivity
of a regularized estimate of f to the noise is made explicit. After giving
the intrinsic rank of the examples of first and second derivative, Abel's
equation and Fujita's equation, it is arqued that the first three are only
mildly 111 posed and f should be amenable to accurate estimation by the
method of reqularization. The method of Generalized Cross Validation (GCV)
for choosing the regularization parameter is described and numerical
results for the estimation of first and second derivative from noisy data
are given. Two numerical algorithms for obtaining a regularized estimate
with GCV are detailed. The second uses a B-spline basis to allow the
handling of large data sats. Ths use of outside information in the estimation
of f is discussed. Three types of outside information are of interest.
1) Several values of continuous linear functionals on f are known approximately,
2) this same information is given exactly and 3) f is known to be in a
closed convex set, in particular f non-negative. The GCV estimate of the
regularization parameter has to be modified in case 3) if the closed
convex set is not a linear manifold. To do this we develop the notion of
GCY for constrained problems. Next, we discuss the problem of checking
the validity of the "modei" X, and orovide a crude goodness-of-fit test.
Finally we end by describing the (known) result that the number k of
iterations in a Landweber iteration for solving large linear systems is
a form of regularization parameter. We then show how GCV can feasibly
be used to choose k in very large oroblems 1ike those arising in computerized
tomography.
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1. Introduction

We first consider the model
] -
z; = é'l((ti,t)f(t)dt e 1 21,2, (1.1)

where z = (21 - zn)' is the data vector, ¢ = (e],... sn)' is a vector of
independent, zero mean random variables with common unkqown variance, K = K(s,t)
is a known function of two variables and it is desired to recover an estimate
of f given the data z. In Sections 2 and 3 f is assumed to be in an abstract
Hilbert space H, in Sections 4-7 we assume that H is a reproducing kernel
Hilbert space (r.k.h.s.) of functions with specified continuity properties.
An estimate of f in (1.1) will be obtained by the method of reqularization,
by seeking fecH to minimize

L 1,gl«xf)(ti)-zi)z + ALIF]]2 (1.2)
where ||.i| is a norm or seminorm in H. The smoothing parameter A will be
chosen by the method of generalized cross validation (GCV), and we will consider
the insertion of various types of outside information into the minimization,
and several algorithmic strategies.

The first goal of this paper is to elucidate and gquantify why some ill
posed problems can now be solved with "off the shelf" techniques and why others
are "impossible”. The real issue is, whether the data from the experiment
described in (1.1) provides sufficient information concerning f to meet the
experimenter's requirements. If so, then the problem can be "solved",
usually with the aid of sophisticated mathematical techniques and a powerful
computer, and we shall call such problems mildly 111 posed. If not, then

sophisticated technigues and powerful computers will not provide the missing

~
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information (contrary to uninformed belief!). [f the low information

A i B e S LT e

! content of the experiment can be recognized, then at least two routes
| are available - a) a redesign of the experiment to provide more information

b) the incorporation of a priori or outside information into the solution.

S In Section 2 we define the "intrinsic rank" of the experiment

| described by (1.1). The intrinsic rank of an experiment is the number of
linearly independent pieces of information practically available in the data
vector z about the function f if there were no errors in the data and K

is known perfectly. Examination of the intrinsic rank of a problem can
provide valuable information concerning whether or not a satisfactory
solution is obtainable. It is computable for the problems we consider in
Sections 5 and 6 and should be done routinely.

In Section 3 we discuss the effect of noise on the solution. This

At e o et Aremaans - o,

is most easily done in terms of what we shall call the canonical representers.

The estimated solution will always be in the span of the canonical representers,

A T T A T N S IR 53 P 15, A1y oo - vy

and so knowledge of them can be a useful diagnostic tool if problems
appear. 'We note here that the intrinsic rank as well as the canonical
‘ representers depend on H as well as n, K, and the location of the t.'s.
_} In Section 4 we give the intrinsic rank, as a function of n, for the
?1 examples of first derivative, kth derivative, Abel's equation and Fujita's
3 equation. [t can be seen that first and second derivatives, and solutions
of Abel's equation should be usefully recoverable with reasonable data
sets, while astimation of f by solving Fujita's equation is hopeless in
the geometry that we considered.
In Section 5, we first briefly review the method of generalized cross
validation (GCV) for choosing \. We then note some successful experiments

in which first and sacond derivatives were well estimated from noisy data.

4 e propose a method for soiving Abel's equation. We note that successful
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numerical experiments on Abel's equation have been carried out using a
somewhat different approach by Anderson and Jakeman (1975). Next, we
describe a "general purpose" algorithm for solving mildly i11 posed problems
when n is around 25 or 30 up to around 100 or 125. This algorithm, which

has its roots in Anselone and Laurent (1968) provides what appears

1
to be a good way of obtaining the minimizer of (1.2) with [[f||2 = [(f"(u))3du
0

while simultaneously obtaining the GCV estimate of X. For n larger than
around 130 or so, this algorithm appears difficult to implement on our

present system (Univac 1100). We are limited by the necessity to solve

nxn eigenvalue problems. We then borrow an idea from Locker and Prenter (1978a,b),

Klein (1979) to suggest that (1.2) be minimized in a B-spline subspace of H.
is used to choose )\ after the dimension N of the subspace is fixed, and

it can also be used to decide between several different N. This approach
appears able to handle N up to about 100 with n larger. Algorithmic details
are provided.

When a problem i§ not mildly i1l posed, but moderately or severely i1l
posed, it is generally necessary to make use of outside information to
obtain a satisfactory solution. In Section 6 we consider three types of
outside information:

1) Values of ka, k =1,2,..., are known approximately, where the Ly
are continuous linear functionals, 2) values of the Lk are known exactly,
and 3) f is known to be in a given closed convex set in H. When H is

an r.k.h.s., then the set of f satisfying f(t) > 0, te[0,1] is closed
convex and this important case is included.

e discuss computing the minimizer of (1.2) using the information 1), 2)
or 3). In each case it is to be expected that the optimal A given the
information 1), 2) or 3) will be different than without it. We show how

GCY should be applied in each case. In particular, if one minimizes (1.2)

o
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subject to f in a convex set which is not a linear manifold, the solution is
not linear in z. It is then necessary to extend the usual GCV method to

cover this case. We do that here, and suggest in addition that this

extended version can deal with some other nonlinear and robust problems as well.

With the advent of sophisticated techniques for solving i11 posed
problems, errors in the model, that is, misspecification of K, will
increasingly become evident. In Section 7 we make some comments on
the detection of serious misspecification in K and tentatively propose an
ad hoc goodness-of-fit test which may be used in conjunction with other
approaches for checking the model.

In Section 8 we leave Hilbert space and reqularization in the form of
the minimization of (1.2) to consider extremely large n, say n > 10“, such
as occur in computerized tomography. It has been observed by Miller (1974),
Fleming (1977), Strand (1976), Bjorck an< Zlden (3979) that, when a
Landweber iteration is used to solve a large linear systam approximately,
the number of itarations and the constant involved in the iteration play
the role of reqgularization parametars. e show how the number of iterations
and the aforementioned constant can be chosen by ACY at 3 computing

cost which is commensurate with the cost of the iteration.
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The intrinsic rank of an i1l posed experimental problem

The intrinsic rank of an i11 posed experimental problem as we define
it here depends on the following:
i) the operator X.
) The number and location of the data points Lyaeneaty.
iii) The space H in which the solution is sought.
) The minimum computer roundoff, 5 (i.e. 5 =~ 107" in double
precision. )
The intrinsic rank " will be the useful number of linearly independent
pieces of information about f in the absence of measurement errors, errors
in X or cumulative roundoff beyond that in iv).
The effective rank will be less than rr and will depend on the above
as well as
i) o2
ii) errors in knowledge of K.
iii) roundoff errors beyond iv) above.
Errors in knowledge of K can be an important source of trouble, we assume
K is known accurately until Section 7. We will assume that computer roundoff
(iii) can be made negligible compared to experimental error (o?) by the use
of high quality quadrature formulae, and careful tailoring of the
numerical methods used to the intrinsic rank of the problem*. We shall
generally ignore it in the discussion. The effect of o is discussed in

Section 3.

*This means that one avoids division by very small numbers!
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We now prepare to define the intrinsic rank rt of the problem (1.1).
We suppose that f is estimated by fn X the solution to the problem: Find

feH to minimize

n 1
LT (z;-]K(t, ,8)F(s)ds)? + A2, (2.1)
i=1 0
where ||fl! is the norm of f in H. Later we will consider the (usual)
1
case where ||| is a seminorm (for example ,!f|| = [[(f"(t))zdt]1/2),
0
however the exposition is considerably simplified with (|- 2 norm.

It is required that H be a space in which the n functionals which map f
to }K(ti,s)f(s)ds, i=1,2,...,n, are continuous linear functions. If this
is ghe case, then by the Riesz representation theorem (Akhiezer and Glazman (1961)),
there exist n elements Nsevsshas in H called the representers, such that
1
éK(ti,s)f(s)ds = <”i’f> , feH, i =1,2,...,n
where <.,.> is the inner product in H. For example if H = L2[0,1] then

for fixed i,

ni(s) = K(tI,S) i= 1,2,...,!‘\.
IfH = HR’ the r.k.h.s. with r.k. R(s,t), then
1
ni(s) = éK(ti,u)R(s,u)du.

The reproducing kernel space results we use in this paper can be found
in Kimeldorf and Wahba (1971), see also Aronszajn (1950). If H is a finite

dimensional space, then each ;4 is a linear combination of basis functions.
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to the minimization problem of (2.1) ran be written

The solution fn \

PR -1
=z K* *.
Fooy = KR(K K *+nAD) 2,

where 2z = (z1,...,zn)'. Kn is the operator which maps # into En as follows:

i
éK(tI,s)f(s)ds

ol
—
i

1
f(t _,s)f(s)ds

g

K; is the adjoint of Kn in the sense that K;: En - H, and K; satisfies

~

(z,an) = <R;z,f> ,

where (-,-) is the Euclidean inner product. It can be verified that

K;z has the representation

~ n
(K*z)(s) = L z;n;(s).
i=1
KnK;: En - En is the operator of multiplication by the nxn matrix with jkth

entry <nj,nk>. This matrix is the Gram matrix of the representers of the

data functionals. I[f H = L2[0,1], then

1 1
f = 2
<nj,nk> s 6nj(s)nk(s)ds = 6K(tj’s)K(tk’°/ds’

and, if H = HR’ then

1
<nj,nk> ] ééK(tj’S)R(S’t)K(tk’t)det'

The matrix (KHK;) is symmetric non-negative definite, and hence has a

decomposition

T T
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(K kx) = ror (

where 7 is an nxn orthogonal matrix and D is a diagonal matrix with eigenvalues
(diagonal entries) iy 2%, 2... 21, > 0.

de define the intrinsic rank ry as the number of eigenvalues A for
wnich i;/3; > §=107"" (computer roundoff). Thus r is the effective number
of linearly independent data functionals in the experiment (1.1} in the
absance of experimental errors or errors in K.

de make several observations about - Firstly, if 4 is a finite
dimensional space of dimension N, then r, < N. This is reasonable, since,
if f is known to be in H, then f is determined by N linearly independent
pieces of information, and the experiment {1.1) cannot deliver more.
Secondly, if 4 is a space of functions with several continuous derivatives,
then (other things being equal), ' will be less than if 4 is LZ' Again,

this is reasonable, since, loosely speaking, ;K(t,,s}f{s)ds and fK(tj,s)?(s)ds

i
can be expected to be less linearly independent on smooth functions than on

arbitrary elements of LZ‘
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Let T and \1,...

data vector y = (y],..

- o ———

The effect of noise. The canonical representars

" be defined by (2.2). e define the canonical

.,yn)' and the canonical representers >q,,....3, by

y =7T'z
s
31(5) “](5)
an(s) 1n(s)

<Oj)3k> = h:, 3 5K

2 =<T‘-,f>‘°5~, ‘=]’29 sN
J VJ J )
vy, = <3.,f> + E_
jJ J J
51 ‘;T )
=r!
\‘:n €n
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and, if the €, are normally distributed, the ;i are independent, normally
distributed with mean 0 and variance o2. Since the experiment (1.1) provides
the equivalent data y, one "knows" the inner product of f with the unit

vector vy = ai//T; from the data to an accuracy of, within, say £2 standard

deviations = 25//??. That part of f not in the span of the first r canonical

representers is not “seen" by the experiment, even in the absence of measurement

error.
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4. The intrinsic rank of some examples t

In these examples we suppose the ti are equally spaced, although no

i ———

doubt the results are true for m?x]t1+1-tii/m:nlti+]-til bounded.

4.1 The first derivative, H = H!

b clm————

4 Let H = H', H = (f: f abs. cont., f'sL,[0,1]}, and let

t
X (kf)(t) éf(s)ds,

thus, é%(Kf)(t) = f(t). Here xn/x1 0(n™*). The rate O(n~") is obtained

as follows: A reproducing kernel for H1 is

R(s,t) = 1 + min(s,t).

Define

1

e P(s,t) = [/K(s,u)R(u,v)K(t,v)dudyv
00

st
= [[(1+min(s,t))dsdt.
00

Then KnK; is the operator of multiplication by the nxn matrix with jkth entry

i -

4% Lo
I A R

P(tj,tk). P is a Green's function for a 4th order linear differential
operator, thus the eigenvalues of the Hilbert Schmidt operator with

kernel P, are O(n'“), j.e. inversely related to the eigenvalues of the
associated differential operator. An argument in Craven and Wahba (1979),

see also Wahba (1977, 1979c) indicates that the eigenvalues of the matrix

ocbtained by discretizing P behave roughly 1ike n times the eigenvalues of

P, giving x /A, = 0(n™"). For a carefully developed argument which gives

similar results in a related problem, see Utreras (1979).
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"' and for 5 = 107'", say K K% is of full

If n =2 103 then xn/x] = 10
intrinsic rank. Provided that the data are not too noisy, this indicates
that effective numerical differentiation is feasible if the true f is

reasonably "nice".

h

4.2 The k™ derivative, H = 4"

m

Let H = H™, H™ = {f: f,f',..;,f(m'l) abs. cont., f(m)eL2[0,1]} and let

t k-1
(KF)(t) = [ 2 f(s)as,
! T

k
thus JLE(Kf)(t) = f(t). Here A /A = o(n=2(mH)y

For example, if k = 3, m = 2, then A /A, = 0(107""). If n~10°" =25,
then i /iy ~ 107'" and so the intrinsic rank of this problem will be around
25. If f is a very smooth function without much structure one might expect
to get a "good picture” of f with 25 pieces of information. Hore precisely,
if f is in the span of the first 25 canonical representers and 52 is not too
big, then a useful estimate of f might be recoverable. Otherwise it probably
won't be. |

This indicates, however, that accurate estimation of second derivative

(k=2), with m=1 is feasible with good quality data, since in this case

A/ e 0(10"°) and RnR; will be of full effective rank for n as large as 150.

4.3 Abel's equations

These equations are of the form

b
(kF)(t) = [ KlEaS)e(s)gs

t (s-t)%

- . S ) H B B 5,
v T T - T e dts
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where k(t,s) is continuous on 0 <s < 1 and 0 < a < 1. They behave like the equa-
tions in 4.2 with k = 1 - g, and so they are of higher intrinsic rank than ;
comparable problems involving numerical differentiation. [f H = Hm, then

A/ = O(n-Z(m+1-a)).

4.4 Fyjita's equation and other severely i1l posed problems

Fujita's equation relates centrifuge data to particle mass distribution. !

See Gehatia and Wiff (1970).

Smax gq-9st
(Kf)(t) = g‘ 3;-—13§-f(s)ds te(0,tpa, J-
-e

With 5 = 4.25 and realistic values of Smax and tmax we found this innocuous
looking equation to be severely i11 posed. With n = 40 equally spaced
data points, and H = H1, we computed the eigenvalues k1,....x41. They turned

out to Took roughly as in the following tabie !

v )‘v v )‘v

1o 6-2¢ 1074 to 10710 |
2 1073% 2541 107 o -107 |
1 1077 |
s 10-10.5 |
5 1074 1

-

We concluded that eigenvalues 5 or 6 through 41 were "machine 0".
The intrinsic rank of this problem is between 4 and 5.

The GCV estimate of the optimal A (the GCV estimate is defined in the

next section) was around 10"1 and was a very good estimate of the optimal )

as measured by how close it came to minimizing
r el Toe e et )2 -
b} N g3 N, AT max T nax ;

M Wﬂ-ﬁt’f;ﬁ_ﬂ'r-' :
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P

in an experiment with synthetic data where f was known. The estimate fn N

may be written in terms of the canonical data and canonical representers of

Section 3 as

[ P

Note that a \ of 10°'" is completely negligible compared to eigenvaiues 1-3,
and completely swamps eigenvalues 5-41. We succeeded in obtaining excellent
solutions in some examples and nonsense results in others. See Wahba (1979c). {
We came to the conclusion that the excellent solutions occurred when f was ‘
effectively in the span of the first 4 canonical representers and the
lousy results occurred when it was not.

Numerical inversion of the Laplace transform can be expected to be

similarly nasty. The problem of inversion of radiance measurements (z)

to obtain temperature profiles (f) from satellite radiance measurements

in the NIMBUS 6 satellite and others also appears to be saverely i1l posed.

See Smith and Wolfe (1976), Fritz et al (1972).
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5. Solution methods for mildly i1l posed problems
5.1 The method of generalized cross validation (GCV) for choosing

Ae review this method since it plays a role in the remainder of the
paper. The theory has been developed in Wahba (1977), Craven and Wahba
(1979) and Golub, Heath and Wanhba (1979). We will refer to these last two
as Cd and GHW respectively. Numerical results concerning the method are given
or mentioned in (W, GHW, Utreras (1979), Merz (1979), Weich {(1979),
Bjorck and Elden (1979), Stutzle (1977), <Zolli Franzone et al (1979).

The idea is as follows: Let fn Ek] be the minimizer of

1 0 . 2 IR

ﬁ 121((”)“")-21) + "\|;f.1 s
jak

where !, . may be a norm or seminorm in H. If ) is a good choice, then

(Kfn gk])(tk)-zk, should, on average be small. This is measured by the

ordinary cross validation function Vo(x) given by

-

n
AORERICAE DICRESS

The following identity is proved in CW and GHW:

[(KE, ) (8 )2, 12
1 (1'akk(1\))z

S
Wi~

Vo(x) 3 i

where fn A is the minimizer of

n
DK (ey)-2;)% + AIfFI2

1
N e

[ TP U "I g 2 L Y e RUCE R T A
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and akk(\) is the kkth entry of the nxn matrix satisfying
' /&Kfn,ﬂ(tﬂ
j \ . = A(R)Z.
1 CARICS

£ It is shown in CW and GHW that, from the point of view of minimizing
pradictive mean square error (defined later), VO(A) should be replaced by

| the generalized cross validation function (GCVF) V(i) given by

3 [(KE . )(t, )-2, ]2

v = 1 [—mal k% W (1) (5.1.1)
g =1 (1-a,, (1)?

a

| where

:i n

;; Jk(l) * ( 'akk )\))/ Z (\)

Note that akk(x) 2 §§E(Kfn,x)(tk)’ and that if all the akk(k) are equal,
then V(A) = vo(k). Collapsing (5.1.1) results in

[(1-A(A))2!}?
v(a) « 2 ) (5.1.2)
Tr(I-A(A)))?

The GCV estimate 1 of A is the minimizer of (5.1.2). It

is shown in C4d and GHW that the minimizer of V(1) estimates the minimizer

of the predictive mean square error T(1A),

PagN o & o

n
LOKE ()= (KF)(t4))?

PR G- <

wn.re f is the true answer in the model (1.1). There are other, possibly

more desirable optimality criteria for A, for example the minimization of
f(f A )=f(t))%dt,

see also Nashed (1979b). One can obtain estimates for \ from the data

A oA, ol ol

S o DA
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which in theory (approximately) minimize TD' foing this in itself

is however, an i11 posed problem. In our numerical experiments

with synthetic data we have generally found that the minimizers of TD(\)

and T(A) tend to be close, and i, the minimizer of V¥(i), is generally a

good estimate of the minimizer of T(\). For this reason we have not seriously
attempted to modify the aoptimality criteria. In a synthetic experiment,

the inefficiency of A can be measured by

~

T()/minT(A) (or To(R)/minT (A)).
A A
5.2 Estimation of the first derivative ;

Here the model is

z; * g(ti) T i=1,2,...,n (5.2.1)

where the £, are as before and geHz. [t is desired to estimate g'. e

let g . be the minimizer in W of

e 3

]
LT (alep-zt + SEOIT (5.2.2)

i=1

and estimate q' by gn,i" where \ is the minimizer of V(i) of (5.1.2).
I3 is the cubic polynomial smoothing spline discussed in Reinsch (1967)
and is differentiated analytically. Successful numerical results appear

in CW, Merz (1978), Utreras (1979), and elsewhere.
Transportable code is available from Merz (1978), Utreras (1979) and

Fleisher (1979). Our experience with the method indicates that it will do

TR
@ s

well for n > 20 or so, whenever g is "smooth”, there are at least 7 or 8
data points per local maximum in g' and when 5 is of the order of a fraction

of a percent to several percent of the range of g.
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Estimation of the second derivative. Numerical results

If g in (5.2.1) has a smooth second derivative, it can be estimated by

differentiating 9 3 twice. This should give good results in the interior

9n,A
estimate g"(t) for t in a small neighborhood of 0 or 1 unless g"(0)

of {0,1], however gn"A(O) x (1) = 0, for any X, so that one cannot

g“(1) = 0.

This problem at the boundary can be eliminated by using

1 1
quintic splines, that is, by replacing [(g"(u))2du by [(g"' (u))3du in (5.2.2).
0 0

To my knowledge a quintic spline using GCY has not been implemented, but it
could be done in a relatively straightforward manner by specializing the
multidimensional results for general m in Wahba (1979a) and Wahba and
Wendelberger (1979).

A Monte Carlo example of the estimation of second derivative of a
periodic function in the presence of noisy data appears in Wahba (1979c¢),
and we reproduce the example. The results were fairly typical of a large
number of similar unpublished examples with high quality (Monte Carlo) data.
In this example

1
g(t) = [K(t,s)f(s)ds
0
with

K(t,s) = ;ift-sfz-ft-sl+%}.

K(t,s) is a Green's function for the second derivative operator such that,
if g = Kf, then g is the solution to g¢" = f, }g(u)du = 0, g(0) = g(1) = 0.
The solid 1ine in Figure la is g and the crosg marks are the data z; = g(ti) * gy
where the :, were simulated normally distributed errors, with variance ¢2.
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> was about 1/300 of the range of g. f is estimated as fn X the minimizer of

n 1
LT LKA (E))-20)% + af(F (w)2du
i=1 4]
1 1
in the subspace of H satisfying the (periodic) conditions [f(u)du = 0,
0
f{(Q) = f(1). The true f also satisfied these conditions. i was chosen

to minimize V(A). The calculation is that suggested in Wahba (1977),
where the fact that ||.|| is a norm on the periodic functions considerably i
simplified the expressions. V(A) is plotted in 1b along with the mean square '

errors T(\) and TD(A) defined by

n ]

T(x) = 1 LUK () - () ()2 {

i= ? }

and .
r) =L e F(t))?
D(X) = f.'l 121( n,J\(ti)- (t-')/

It can be seen that the minimizer of V()\) is a good estimate of the minimizer
of both T(i) and TD(X). The theory in CW and GHW says that V{\) shculd
"track" T()) and one can see that this does in fact happen. Figure lc
compares the true and estimated second derivative. [t can be seen that the
rasults are very good.

Interest in estimating the second derivative was motivated by the

following problem. The Lamm equation

ac

2 é%(rD%% - sw?rie) (5.3.1)

S

where ¢ = ¢(r,t) is the solute concentration, D the diffusion coefficient,
s the sedimentation coefficient, and x the angular velocity, describes
the behavior of solution concentration in an ultracentrifuge. r is radial

distance from the centrifugal axis and t is time. See Oishon, Weiss and
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Yphatis (1966). . is known. c{r,t) is measured for a finely spaced set of

r's at a number of values of t. From this data, it is desired to estimate

D and s. The Lamm equation can be rewritten as

k..
f 13 , 3%¢ 3¢
. cir,t) = 84l =+ —=| + 3, =
% ( ) ][Y' ar 3!‘21 25
% where
3
5_, = D , :32 = 1

7 2sw? 235w?
;
3 e 3% 3¢ : £ a 2

If = , = and == can be estimated from the data, then 2, and 3, can be
- ar 3p2 3t 1 2

f estimated using regression techniques. The idea is to take an r slice

% ) of the data for fixed t and use the smoothing spline technique with 3CV
. 2

to estimate %% and é—% , similarly with t slices of the data. Centirifuge

ar

data is frequently of the quantity and guality similar to this examole,
and it appears that estimating 3 and 35 is quite feasible, assuming that

the model 5.3.1 reasonably represents reality and sufficient data is available.
5.4 Abel's equations

These equations have been studied by Anderssen (1976), Anderssen and
de Hoog (1979), Anderssen and Jakeman {1975) and Jakeman and Anderssen (1975a,b).
They have provided solution methods and a number of numerical results.
Anderssén and de Hoog (1979) have called these problems 'weakly i1l posed”.
Some of these equations have inversion formulae involving the first derivative.

For example (Anderssen (1976)) if
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t
max -
g(t) = 2 f ——ZS—T(E'{W ds (5.4.])

then

max '
fs) = - 4 —AE g, (5.4.2)
s (t?-s?)

In addition to the spectral differentiation - product integration methods
proposad by Anderssen and Jakeman (1975) the following procedure should oe
quite effective. If z, = g(ti) * g; 1s observed for i =1,2,...,n, then g

is estimated by g and g' is estimated by g' , as in Section 5.2. Since
n,A n,

A
g! . is a polynomial of degree 2 in each interval [ti,t.+]}, ga , can be

n,A i
substituted into (5.4.2) and the integration carried out analytically.

This is possible using formulas 129, 136, and 153 of Pierce-Foster (1956).

In some examples, g is a density and only observations ;(1,...,Xn from this
density are available. See Jakeman and Anderssen (1975b). Using a spline
density astimate for g (see Wahba (1975, 1976)) would aliow the analytical
integration of (5.4.2). These two spline methods do not however as yet

have associated with them automatic methods for choosing the ootimal regulari-
zation parameter. Based on our experience with density estimates, we conjecture
that the following method will be effective. Use Wahba (1978) to obtain an
estimate for the density g from X1,...,Xn. This method has an optimal
integrated mean square error procedure for choosing the smoothing parameter

as part of the density estimation. The estimate so obtained is "close"

to a spline. Interpolate this density estimate with a cubic spline with
convenient knots, and use the spline interpolant to the density estimate in the
analytical integration of (5.4.2). (This last is, of course, a form of product
integration!).

Fymat and ilease (1973) have also studied first kind equations possessing

inversion formulae invoiving the derivative of Xf.

Ty
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5.5 A "general purpose’ algorithm for 25 < n < 100

In this section we elaborate on Wahba (1977) and give a “general
ourpose" algorithmic approach for mildly i11 posed problems. (e say
“general purpose" advisedly.)} The upper limit on n is determined by
Timitations on computing the eigenvalue-eigenvector decomposition of an

nxn matrix. It is assumed that the errors in the data are relatively

small and random and that K is known correctly. Cartain integrals lelow
must either be Xnown analytically or amenable to iaccurate guadrature.
The approach is the "Eastern' route described by Nashed (1979) in
wnich discretization beyond that imposed by the data is done as late as
J0ssible. In the approach we take, any required numerical guadrature is
isolated, and hopefully quadrature errors can be controlled so that they

are negligible compared to experimental errors in the data. (This may

not always Se true, for example, with K such as found in scattering orobiems
1ike those considered in Fymat and Mease (1978)).

The algorithm is based on the following:

-t :m - ) - 4 -
Theorem: Let A = (f: f,f,.. f(m ) abs. cont., f‘m)aLZLO,T]}. Let

.

“7s..+swy SPan the space of polynomials of degree m-1, and suppose the

axm matrix T with iuth antry [Tjiv given by

—

[T1;, = [X(t5,8)w, (s)ds

O~

is of rank m. Then the solution to the problem: Find feHm to minimize

1
e (-2 [(e(™ (5))2as (5.5.1)

!
n 1 0 I

ne-13

1

is unique and is given by
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where

1
n;(s) = fK(ti,u)R(s,u)du
0

1 (u--x)T"I (v-x)T'1

Rud = [ mmr ey &

and ¢ = (cT,...,c ', d = (d1""'dm)' are determined by

(Kn+nkI)c +Td = 2

T'c¢e = 0,

where Kn is the nxn matrix with jkth entry

1
[Kn]jk = ééK(tj,U)R(u,V)K(tk,v)dudv.

A proof of this theorem may be found in Kimeldorf and Wahba (1971) Lemma

5.1 where a diffarent but equivalent system of equations is given for ¢

and 4. See also Hilgers (1976).
We now turn to the computation of fn 3 where X is the minimizer

of Y(A). It is desirable to formulate the calculations in terms of a

convenient nxn-m matrix U with the properties

u'u
u't

In-mxn-m

On-mxn

Given such a matrix, it can be shown (see Anselone and Laurent (1968))

that
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U(U'KnU+nAI)°]U‘z

(2]
"

= (T'T)']T‘(Z-Knc)

(o8
1]

and (Wahba (1979a))
T-A(X) = AAU(U'K_U#naD) 0",

In Wahba (1979a) and Wahba and Wendeiberger (1979), we have successfully
computed c,d and Y(i) in some two dimensional spline problems which have
equations of the same structure, in the following manner, using double
precision EISPAC (B.T. Smith, et. al. (19768)). U is obtained with EISPACK
as the matrix whose n-m columns are the n-m eigenvectors of the rank

'1T’ corresponding to the n-m unit eigenvalues.

n-m projection matrix I - T(T'T)
These aigenvectors are not uniguely determined, any set spanning the space
oerpendicular to the columns of T are allowed. Letting 8 be the n-m x n-m matrix
J'X U, with eigenvalue decomposition U'K U = 7DI'', with T and D again found

oy £ISPACK, then

c = UP(D+nAI)'1F'U‘z

and
1 nim (nx)? F
) NN CICOVERS
Vi\) =
n 42y dy+na
where

Y2 (Y )t = V2

and 0 = diag(d;,...,d o).




and form =2

The calculation proceeds by computing Kn by a high powered quadrature formula
and “1(5) also by quadrature, on a fine grid in s.

In the work on second derivative and Fujita's equation noted in Sections
4.4 and 5.3, we computed Kn and the n; by quadrature with great success
in the second derivative experiments and failure with Fujita's equation.

The failure was not in the determination of Kn’ nti and di’ since in fact
excellent solutions were obtained in certain "lucky" cases, see Wahba
(1979c), but the general failure is explainable by the severe i1l posedness,
as already noted.

The numerical quadrature can be expensive, as far as computing goes,
since there is a lot of it, but we were able to perform it with sufficient
accuracy that quadrature error was not evident in the results. "Expensive"
of course is relative, because an "expensive" S20 comoputer run is frequently
"cheap" compared to the cost of data collection.

These computations have also been successfully carried out in a multi-
dimensional smoothing context with n as large as 130. (Wahba (1979a),

Wahba and Yendelberger (1979), Wendelberger (1980). In these oroblems
K was the identity and aF and K, are known analytically. We found that

double precision SISPACK returned the 130 eigenvalues of I-T(T'T)‘1T‘,

Vo e LY W T




(which are known to be 0 or 1) to seven or eight digits.

' Thus, although the above procedure has not been implemented as a
whole, it appears promising for medium n, mildly i11 posed problems
where K is such that either Kn and n; are known analytically or computed

} ' accurately by quadrature.

]
5.6 Canonical form of fn N using the seminorm ( (f(m’(u))zdu)1/2. Choice of m.

Ot —

The solution f to the minimization problem of 5.5.1 can be written

| n,A
in the form

where
f Y= lygeeeayy o) =002
and
(Bysecerdg_g)' = T'U (ngs.eunp).

£ and T,Uand D = diag{di} are as in Section 5.5. (Note that while U is

not uniquely determined, ['U' is (if the d; are distinct). Here the

canonical representers are Wyse e sty and (¢1,...,¢n-m). The intrinsic

~ ot
A A

rank "t of the experiment is m plus the intrinsic rank of D. MNote that

as A - = the solution tends to

o oy
Y S

= ) ] 'i 1
f (mT’ucd’wm)(T T) T z, .\

n,»o

the least squares regression of the data onto the span of the polynomiais

of degree m-1 or less.
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In the above expressions dependence of T,Kn.U.T, and ‘p: on m has
been suppressed. As m increases, the number of "special” functions

S EEERRT increases while the di will go to 0 faster. It is “customary" to use m=2,

however, a choice between competing m's can be made by comparing infvm(x),
b\

for the different m's, This is done in Wahba and Wendelberger (1979), see

also Gamber (1979).

5.7 A “general purpose" algorithm for larger n. Regularization with a

B-spline basis

We now continue with the type of problem considered in 5.5 where n is
too large for the convenient solution of an nxn eigenvalue oroblem. Locker
and Prenter (1978a,b) have suggested solving regularization problems in N
dimensional subspaces of H™ spanned by splines, and have given some convergence
theorems. See also Klein (1979). We will take the suggestion and combine it with
GCV for choosing \ to provide a "general purpose" algorithm for large n. The upoer r
1imit on n will no doubt be determined by storage requirements in storing Nxn
arrays.

Ye seek the minimizer of

41—
He-13

1
((KF)(t;)-2,)% xé(f(m)(u))zdu

i=]

in Hg, the subspace of HM spanned by spline functions, which are piecewise
polynomials of degree 2m-1 in each interval [&.,%ﬁl , 1 =20,7,...,N-1,

joined together so as to have 2m-2 continuous derivatives. [t is well

known (Curry and Schoenberg (1966)), de Boor(1978) that this subspace is

of dimension N=N'+2m-1, and it follows from the results of Curry and

Schoenperg that it is spanned by theB-sdines Bj(t), j=1,2,...,N, where,
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3 for tz[0,1] the Bj are defined by
7 ! 3,(t) = By (tdfed), 5 = 1,2, 0N |
} : B, (t) = z;ﬁ;)Zm_ls(N't)
;'
3(t) * Tz j?;](-)J(%?><c-i‘f”". ¢ [9.2m]
= 0 otherwise

where {x)_= x, x > 0, = 0 otherwise.
Figure 2 shows Bj(t) forms= 2 and j = 1,2,3,4,8-2,4-1,N.8-5pline bases
| i of degree 2m-1 are well known to have good approximation properties in A",
§ f Given L
N
f = .Z1cj Bj(t)

one seeks ¢ = (c1,...,cn)' to minimize 1

1
A2+ 1M )20

sl ? ( ? e (XB.)(t.)=2.)2% + 2 g c.c }B(m)(t)B(m)(t)dt.
o Ngapgar 41T jok=1 37k k
;} Let X be the nxN matrix with ijth entry &
Q4 1
3 (KBj)(ti) = gK(ti,s)Bj(s)ds

and Tet | be the NxN matrix with jk™" entry 1

1
g * éagm)(s)sém)(s)ds.

'
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E Figure 2. Bj(t), for m = 2
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- The ij for m = 2 are given in Table 1. [t may be necessary to obtain
“' the entries of X by a high-quality quadrature routine. We must find ¢

to minimize
q ) 2 o
p ‘ ailz - Xel|? + ac'jc.

This may be done as follows:

We first note § is of rank N - m. This follows since the 8,,...,3y

g | are linearly independent in Hm, however l,t,...,tm'1 are in span {Bj}'}g1

| N

so that ¢'Jc = 0 if 7§ chj(t) is a polynomial of degree m-1 or less.
i=

T e (e

i-‘ We next decompose c into a component in the null space of ; and a component i

in the null space perpendicular of ] as follows. Letting

| } = ISt

o rmmr o e e | et RS

where T is the NxN-m matrix whose columns are the non zero eigenvectors of
" and S the N-mxN-m matrix of non zero eigenvalues of 7, and & tha Nxm
matrix whose columns are the zero eigenvectors of ), then ¢ has a unique

reprasentation as

/2

¢ =152 4 ag (5.7.1)

for some v = (y],... )', d = (d1,...,d ).

*IN-m m

Letting

Y = xrs™1/2 (5.7.2)
. T=Xa (5.7.3)

and assuming that T is of rank m, we have

Xc = Yy + Td (5.7.4)
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|
i'.
| K .
IN 1T 2 3 4 5 6§ . <« N3 N-2 N-1 N
- 112 -3 0! 1 0
4
’f 2 1-3 8 610 1 o9
| | O
3 310 -6 14i-9 0 1 o9
- o = wm om =]
b 4917 0 -3 16 -9 0 1 0
f _
b 5:0 1 0 -9 16 -9 0 . -. :
;*. 61 0 1 0 -9 16 - - . To get é's'j%s)s;(s),
g 1 o divide Taple entry
; 0 - 0 by 6.
.0 1 0
1 N-3 6 -9 0 1
N-2 L. 0 =914 6 0
N-1 N o 1 0'-6 8 -3
N 0 170 -3 2
Table 1
6ojk,m=2
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1 and v and d are obtained by minimizing
| T k) (e -20% + maf(F ™ () 2du = lz-veTal? ey
. 2 p 'Zi) nké( (u))du = |iz-Yv-Td}, NAY'*.
i=1

b
I
L Differentiating with respect to v and d and setting the result equal to 0

' gives the following equations for y and d:
’?
o (Y'Y+nAl)y + Y'Td = Y'z (5.7.5)

d= (TT)71T (2-1). (5.7.5)

: Defining
: p=T(T) T
o

! W= (1-P)Y

E and substituting (5.7.5) into (5.7.5) gives
¥ = (w'w+naz)‘1w'z. (5.7.7)
Let
W'W = VDV

where YV is an N-mxN-m orthogonal matrix and D is diagonal. Then

X v = v(o+nAI)°1V'H‘z (5.7.3)
by

ij and ¢ is obtained by substituting (5.7.3) and (5.7.6) into (5.7.1).

f To obtain V(1) we note that

r

Gl

(I-A(A\))z = 2 = Xc = 2 = (Yy+Td) = 2 = (Y+P(z-Yv))
= (1-P)z - (I-P)Yy

= (I-P)z-w(w'w+nxl)'1w'z.

—— e

i - e e e

’ N IF YR AN 4 y R, N \’, N
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Thus

(1-A) = (I-P) =W (W'W+nAl) ™ TW"

and, letting d1,. d be the diagonal entries of D, gives

*tPNem
( ) N-m d.
Tr(l-A) =n -m -

je dj+nx

N-m .
=n-N+ z PRLLL

. .+
J=] d) NA

The intrinsic rank of this experiment is m + the intrinsic rank of D.

Finally,

C(1-A)zZ] 12 = I(I-P)zZ! 12 - 2z W(H WenAl) Tz

P TUR LS R R TR SN SRALP:
N-m(Zni+d.)
) X2
.= +d.
J=](n/\ dJ i

= |[|(I-P)z]?

where x = (x1,...,xu_m)' = Y'W'z. Thus

N-m (2ni+d.)
Ui-P)zl 12~ [ moegtT %yt
3= i

V(l) =

N-m n
(e T ey’

The calculations are summarized in Table 2.
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o
- Table 2
: ‘ Summary of Calculations for
; Reqularization and GCY with a B-spline basis
‘ l Z = TST' *
3
| Y = xrs~1/2
Let & satisfy ©'2 =0, o *
T
p=T(TT) I
i W= (I-P)Y
; WW' = VDV, D = diag(dy,...,dy_ ) *
v = V(D+nAD) Ty
d= (T'T) 11 (z-14)
¢ =15 2 4 ad
x = V'W'z
N-m 2ni+d;
NI
H(I-P)z] L (ﬁ;:g%yr xs*
= J= N
V(x) N-m
- ' ni 2
(n-N+ jz1 (nd;] )

Note that T'T is mxm, S is well conditioned. The eigenvalue decompositions

at (*) can be done in double precision EISPACK for N up to 100 or more.




6. The use of outside information. GCV in constrained reqularization

Jestwater (1979) and Jackson (1979) nave described experiments where
outside information has greatly improved the estimate of the solution.
For example Westwater described now external measurement of the temperature
inversion neight aided in the determination of atmospheric temperature
profiles.

In this section we consider first the situation when the values of
one or more continuous linear functionals of f are known, either approximately
or exactly.

Tnen we consider the situation where it is known that f is in a
given closed convex set in 4. If H is a reproducing kernel space then the
important special case f(t) > 0, te[Q,1] is included here. Chambless
(1979) has used positivity constraints in a form similar to that which we
discuss nhere. See also ecman (198C). Sabatier (1977) considers positivity
constraints from an entirely different noint of view.

A third situation arises when detailed information concerning the
possible shapes of thebsolution is available, for example, as mentioned
in Section 4.4 when libraries of temperature profiles obtained from balloon
measurements are available when attempting to estimate the temperature

arofile from satellite radiance data (Smith and Woolf {1976)). It is
possible to add various constraints, do regularization, etc. in this context
but we will not discuss this situation further.

In this section we assume that n is small enough that an nxn eigenvalue
probiem can be solved, and we operate in the general context of Section 5.5,
with some simplifications. CEverything can be carried over to the B-spline

basis approach in Section 5.7 but we omit the discussion.
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8.1 Values of & continuous linear functions ire known approximately

In this section we use the notation and methods of Section 5.5. It

is assumed